
P H Y S I C A L R E V I E W - V O L U M E 1 3 4 , N U M B E R 6A I S J U N E 1 9 6 4 
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A set. of reversible equations for Fi, the first distribution function and g, the correlation function, are 
derived for the weak force case. The "forward motion," i.e., development in time from uncorrelated initial 
conditions, and the corresponding reverse motion are examined. In the "forward motion" the equation for 
Fi evolves into the Fokker-Planck equation while in the corresponding reverse motion F\ is described by an 
anti-Fokker-Planck equation. 

I. INTRODUCTION 

TH E problem of irreversibility has existed since the 
time of Boltzmann. The problem may be stated 

as: How can one derive an irreversible equation (e.g., 
the Boltzmann equation, the Fokker-Planck equation) 
on the basis of reversible mechanics? In recent years a 
number of derivations of irreversible equations have 
been accomplished based on a variety of assumptions. 
However, these methods have not completely illumi­
nated the transition from the reversible to the irre­
versible equations. Most of these methods start from 
the Bogoliubov-Born-Green-Kirkwood-Yvon (BBKGY) 
equations,1 which for an infinite system are 

8Fs(xh- • -x8,t) 

dt 
-3CsF\(xh- - -x8,i) 

= - / dx$+i] 
Vj i 

L Oi.s+iFi+i(xi} - • -x8+i,i) (1) 

^ = 1 , 2 , 

where Xi= {q*,P;}; qt, pi being the position and mo­
mentum of the ith particle, 

d<pij d d<pij 6 

dqi dpi dqy dp3 

and <pij(\ q — qy|) is the in termodular potential. 3CS is 
given by 

s Pi d « 

*»i m dqi i<i 

and v is the volume per particle. F8 is defined through 
DN(xi}' - -XN,£) the probability distribution in T space 
for the entire system by 

Fs(xh- * XsjlJ 

= Vs / • • • / DN(xh • • -xN,t)dxs+v - -dxN. (2) 

The 5th equation of (1) is obtained by integrating the 

* Supported by the U.S. Office of Naval Research, 
1 G. E. Uhlenbeck and G, W. Ford, Lectures in Statistical Me­

chanics (American Mathematical Society, Providence, Rhode 
Island, 1963). 

Liouville equation 

(dDN/dt)+WNDN = 0 (3) 

over the coordinates x8+i, • • • ,xn. 
In particular, the method of Bogoliubov2 is to assume 

that all Fs (s ^ 2) are functionals of Fh and the form of 
the functionals are determined by an assumed boundary 
condition on the functionals. On this basis, the first 
BBKGY equation [Eq. (1), 5 = 1 ] becomes the Boltz­
mann equation (or the Fokker-Planck equation depend­
ing on whether the expansion parameter for the dis­
tribution function is v~l or the strength of the inter­
action). The assumptions of Bogoliubov obscure the 
transition from the set of reversible equations (1) to 
the irreversible equations. In fact Cohen and Berlin3 

have shown that, on the basis of an equally plausible 
boundary condition on the functionals, the collision 
term will be the negative of the Boltzmann collision 
term (an anti-Boltzmann equation). On the other hand. 
Green and Piccirelli4 have shown that, on the basis of a 
product type condition on Fs(s^2) at the initial time, 
the higher distribution functions do, in the course of 
time, become the functionals of Fi predicted by 
Bogoliubov. From this point of view it is no longer im­
portant that the Boltzmann equation is time irreversible 
since the Boltzmann equation evolves from the first 
BBKGY equation only after some period of time pro­
viding the initial Fa (s ^ 2) fall within the assumed class 
of initial conditions. The reverse motion is presumably 
accomplished, since the BBKGY equations are re­
versible, by another special class of initial Fs(s^2); 
this motion is probably describable by a single equation 
for Fi (such as the anti-Boltzmann equation).5-6 I t 
is to these points that this paper is devoted. 

2 N. N. Bogoliubov, Problems of a Dynamical Theory in Sta­
tistical Physics, translation by E. K. Gora, Studies in Statistical 
Mechanics (North-Holland Publishing Company, Amsterdam, 
1962). 

8 E. G. D. Cohen and T. H. Berlin, Physica 26, 717 (1960). 
| 4 M. S. Green and R. A. Piccirelli, Phys. Rev. 132, 1388 (1963). 

6 There remains the question of how one can justify the use of 
the Boltzmann equation when other types of developments are 
possible with other types of initial conditions. The answer must 
be in the following: If we consider a system in which all that is 
known initially is Fh then there exists a large class of initial D.v's 
that give the same Fx but different Fs(s^2). In the spirit of sta­
tistical mechanics we can assign a probability to these Z),v?s and 
obtain a probability distribution for Fs and ask for the most 
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We consider a special case, namely a weak potential uniform case, are 
in a spatially uniform system. This case is general 
enough to produce an "irreversible" equation, the 6F (v t) 1 /* 
Fokker-Planck equation, yet simple enough to examine — !—=- / dx2di2(xi,x2)F2(xhX2,t) , (4a) 
both the forward motion (i.e., the development in time dt vj 
from uncorrelated initial conditions, a special case of 
the Green and Piccirelli initial condition) and the corre- dF2(xiyX2,t) 
sponding reverse motion. The evolution of Fi for the \-^2(xiix2)F2(xi,X2)i) 
forward motion is governed by the Fokker-Planck equa- ™ 
tion while the corresponding reverse motion is governed 
by an anti-Fokker-Planck equation. = - / dxz(di3+d2z)Fz(xhx2,xht) • (4b) 

vj 
II. BASIC EQUATIONS 

We start our development with the BBKGY equa- We introduce the two particle, three particle—correla­
tions, Eq. (1), the first two of which, in the spatially tion functions g and h—by 

F2(xhx2it) = ^i(Pi,0^i(p2,0+£(*i>*2,0, (5a) 

F8(*i,*2,*3,0 = ^ i ( p i , 0 ^ (5 b) 

etc. With these definitions, Eqs. (4a) and (4b) are 

dFi(Pi,0 1 r 
- = - / dx<0i2g{xi,x2,t), (6a) 

dt v 
dg(xhx2}t) 

r-[5Ci(«i)+3Ci(^2)]g(^i,«2,0 
dt 

= 0i2ZFi(pht)Fi(p2,t)+g(xhx2,t)'2+- / dx36nFi(pht)g(x2,xhl) 
vj 

+ - / dx$2*Fi(p2}t)g(xi,x3,t)+-- / dx3(du+e2dK^h^2,xhi). (6b) 
VJ VJ 

Define the operator S-t(xhx2) in terms of the single-particle Liouville operator 3Ci by 

S-t(xhx2)=exp{-t£3C1(x1)+W1(x2)']}, (7) 

i.e., S-t(xhx2) when operating on the point x{ (i= 1, 2) propagates the point back in time along & free-particle orbit 
over a time interval /. Equation (6b) can be formally integrated along free-particle orbits to give 

/

t—tQ I 

dt'S^t'{xhx2)\dl2[Fi{ph t-t')Fi(p2l t~t')+g{xh x2, t—t'Y] 

— / £&80iaFi(pi, t-t')g(x2, xz, t-t')+- / dxzS2zF1{ph t-t')g(xh xh t-t') 
VJ VJ 

-- / dxi{6n-
vj 

+ - / dxzduFxip!, t-t/)g(x2, xi, t-t')+~ I dxze2zFx{ph t-t')g{xh xh t-tf) 

+ - / dxz{0u+e2Z)h{xh x2y x3, t-t') . (8) 

At this point we introduce the weak short-range potential and assume we can find a solution in the form 

g(xhX2,t) = g°(xhX2,t) + €g<il)(x1,X2,t)-\ i (9) 

h (xhX2,xht) = h° (xhx2}xz,i)+eh(1)(xhX2yXz,i)-\ , 

etc., where e is an expansion parameter that measures the strength of the potential (actually a measure of the ratio 
of the average potential to the average relative kinetic energy). For our purpose it will be sufficient to consider 

probable form for Fs. This has been considered by Grad (Ref, 6) who has shown that most likely the Fs are uncorrelated. 
6 H. Grad, J. Chem. Phys. 33, 1342 (1960). 
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gQ (%i,%2,to) — h°(xi,X2}%d,to)= - - - = 0. The zeroth- and first-order equations are then (dropping the e notation) 

pt— to 

gaK%u%2,t) = S-it-tQ)(xi,X2)g(1Kxi,X2A)+ / dt'S-t'ix^dnixxX^FiiVh * - 0 ^ i ( p 2 , t-t'), (10) 
J 0 

etc. 

To this order, the equation for F\ [Eq. (6a)] is 

dihivht) l r 
= - / dx2d12g

(i)(xhx2yt). 
dt vj 

(11) 

In Appendix A we prove that the set of Eqs. (10) and 
(11) are still reversible; the e expansion has not de­
stroyed the reversibility. This point is taken up again 
in Sec. IV. 

III. RELAXATION OF THE CORRELATION FUNCTION 

We now consider a special case, namely (taking to=0), 
£(1)(*i,*2,0)==0. 

(a) Consider first that | qi— q2| <R, where R is the 
range of the force. If we assume there exists a time r, 
the "time of a collision," such that for essentially all 
relevant momenta 

S-T(xi,x2)-
^ ^ 1 2 ( | q i - q 2 | ) 

dqi 

= d<p12\ 
(Pi 

q i - q 2 ~ 
^P2) 

r aqx=0, 

(12) 

(13) 

then Eq. (10) reduces, for t^ r to 

g(1) (xhx2,t) 

= / dt,S-.tf{xhx2)e12F\{vht~t')F1{V2,t-t
f)) 

Jo 
for t^r\ 

and, from (11) we have 

F1(pht-t
f) = F1(pi,t)+0(r/T) for 0 ^ ' < T , 

where T is the mean time between collisions. 
To lowest order, 

gpp ( 1 )(*i , ;M 

dt'S^ix^dnF^p^F^t), 

for t^r. (14) 

Therefore, to this order, the functional form proposed 
by Bogoliubov develops, for | qi— q2| <R> in a time r 
from the initial time. The subscript F-P on ga) indicates 
that this is the form of g(1) that together with Eq. (11) 
is the Fokker-Planck equation (or, as Bogoliubov calls 
it, the Landau equation). The Fokker-Planck equation 
is irreversible in the sense that it obeys an II theorem.7 

7 A. Lenard, Ann Phys. (N. Y.) 10, 390 (1960), 

(b) Consider [ qi— q 2 | > i£ . 
Suppose pi and p2 are such that at no earlier time 

have the two points interacted, i.e., | S-t(oci,x2) {q i~ q2} | 
>R for 0^t^ oo ; then g(x)(xi>X2yt) = 0 for all time. 

If pi and p2 are such that at an earlier time r0(xi,x2) 
the points are just starting to interact, i.e., 

| 6L T 0 {q i -q 2 } |= i? , 

then Eq. (10) is 

ga) (xhx2,t) 

= 0, ^ r 0 ; 

= / dt'S-t>(xiX2)6i2F1(pht--t')F1(p2,t--t')i 

r o ^ ^ r o + r ; (15) 

dtfS-tS12F\{Vh * - 0 ^ i ( p 2 , t-t'), 

The asymptotic fonn for g(1) is reached only after 
t^ r 0 + r which can be (for given pi and p2) arbitrarily 
large for points qi and q2 sufficiently far apart. I t is 
interesting to notice that the previous history of the 
system, in terms of Fh is stored in the correlation func­
tion of distant points; for, at any time /, there are 
pairs of points (qi,q2) such that the corresponding g(1) 

depends on the value of F\ at any given time between 
zero and t. 

The asymptotic form of (15) can be written as 

g{1) (xhx2,t) = J(t— TO) • I r o , t^ r o + r , 

J (0 = f )Fi(Vi,t)Fi(V2,t)> 
Vdpi d p 2 / (16) 

*-rn 

ro+r 

dt'S-t'(xi,X2)-
d<pi< 

) 
dqi 

where we have again used Eq. (13) and, from the 
spherical symmetry of the force law and the fact that 
the collision is completed, Iro is in the direction of the 
distance of closest approach r0. Therefore, g(1) is non­
zero if J has a component in the r0 direction. In equi­
librium, J is in the direction of the relative momentum 
P== P2 — Pi which is normal to r0 so that g(1) — 0. We see 
then, in the nonequilibrium state, the range of g(i) can 
be arbitrarily large, but the range of (pi>p2) which 
gives a nonzero value to ga) goes down with increasing 
| qi— q.21. In Appendix B we show that the long range 
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of ga) does not cause the next approximation g(2) to pressing qi, q2) we have 
become unbounded with time. , w , 

g c i ) ( o | ^ P l , - p 2 , 0 
IV. THE REVERSE MOTION -< 

In Sec. I l i a we considered the evolution of a system = J *'&-«'(-Pi> - p 2 ) 0 i 2 ( - P i , - p 2 ) 
that at zero time was uncorrected. In this section we 
shall describe the corresponding reverse motion. For XFi(0\ — pi, t~tf)Fi(Q\ — \>2,t—tf). (18) 
this purpose we consider the evolution of a second sys­
tem constructed at an arbitrary time / 0 >0 that is A t time h start another system off with initial 
identical to the first system but with all momenta conditions 
reversed. This second system is initially correlated in a F\(U\ pi t) I _ =.Fi(0| — pi to) (19a) 
special way and it is this initial correlation which 
causes the reverse motion to be accomplished. g(1)(^o| Pi,p2,01 t=to = ga)(Q\ ~~Vh ~~P2, ^o). (19b) 

Consider again the initial condition g<l>(*i,*2j0) = 0. F ^ w e h a y e f r o m E ( 1 Q ) 

We have, from Eq. (10) with *0=0 ^ i K J 

t = S-it-to) (Pl,p2)g(1) (*0 | Pl,P2,/<>) 

- / dt'S-t>(xi,X2)6i2Fi(0\pi,t-t') rt-to 
Jo XFM^t-f), (17) + J 0 ^ - ' ^ ^ M P I . P O 

u i. J - , • , u • m J D XF1(k\Pl,t~l')P1(t0\P2,t~t'). (20) 
where the zero preceding the vertical bar in g{i) and t\ 
indicate the initial time was zero. In particular (sup- Using (19b) and (18) in (20) we have 

^(1)(^o|pi?P2,0 = ^-(^o)(PiJP2) j dtfS-A-Vi, -P2)^ i2( -P i , -V2)F1(0\-Vhto-OFl(0\-p2,to-tf)\ 

ft—to 

+ / ^ /5_^(p l jp2)(912(p l jp2)F1(/o|pi, t-t,)F1(t0\p2J * - / ' ) . (21) 
J 0 

In the first term in Eq. (21) we can combine the S operators 

S-(*-*0)(PiJp2)S-i'(— Pi, — p2) = 5-(Wff-r)(Pi,P2) = «SL(«/+<0-o(-" Pi> — P2). (22) 

Splitting the range of integration in the first integral in (21) into 

(0, t-tQ) and (t-t0,h) for t0<t<2t0, 
the first integral is 

ft—tQ ftQ "j 

I dt'S^(t-t^t>)(VhV2)+ / dt!S-«>+t*-t)(-Vi, ~p 2 ) \OuF1F1. 
'O J t-tQ J 

Changing time variables, Eq. (21) becomes 

ft—tQ 

g(1) QoI Pi,p2,0 = / dtS-.v(pi,p2)«i2(~Pi, - p2)/7i(0 j ~ p i , 2 / 0 + ^ - 0/^i(0J - p2, 2h+t'~-t) 
Jo 

2t0—t 

dt?S-.t>(-Ph -V2)du(-ph ~p 2 ) / ? i (0 | — pl7 2 / 0 - / / - / ) ^ i ( 0 | - p 2 , 2t0-tf-t) 

+ dt/$^(php2)ei2(Vi,P2)F1(t0\pht-t')Fl(t0\v2,t--t')y for tQ^t^2tQ. (23) 
Jo 

From the general reversibility argument (Appendix A) we would expect 

^i(fo|pi,0 = -Fi(0 | -Pi , 2 /o - / ) , (24a) 

«a)(^o|pi,P2,0 = * a ) ( 0 | - P i , - P 2 , 2 / o - 0 , for t0<t<2h, (24b) 

file:///OuF1F1
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which satisfy the initial conditions (19a) and (19b). To show that this is the case, suppose (24a) is the solution of 
(23) and (11), then the first term in (23) cancels the last term and the remaining term is, by (18), ga)(0\ — pi, 
•—p2, 7.h—t) thus establishing (24b); and (24b) in (11) leads to (24a), i.e., Eq. (11) is 

dFi(h\pi,t) 1 

dt 
The right-hand side of (25) is 

1 

vj 
dx2ff12(phV2)g{1)(h\VhV2,t). 

dx2d12(php2)g(1)(0\~Vh - P * 2/o-/) = — dx2d12(-ph - P 2 ) g ( 1 ) ( 0 | - p i , - p 2 , 2 / 0 - / ) 

(25) 

(25a) 

and the right side of (25a) is, by Eq. (11), dFx(0\-ph2t0-t)/dt; we have for t0<t<2t0, dFi(t0\pht)/dt 
=-dF1(0|—pi, 2t0-t)/dt, or Fi(t0\pi,t)-Fi(to\pi,h) = Fi(0\-pu 2t0-t)-Fi(O\-ph t0) and, with initial condition 
(19a), this is (24a). 

Over the time interval to<t<2to, the equation for Fi(t0\ pi,t) can be obtained from (25) and (23). Equation (23) 
can be written, using (24a) and (13), as 

f*2 to-1 

S (1)('o|pi,P2,0= / ^ - * ' ( - P i , -P 2 ) ^ i2 ( -P i , -p2)Fi(0\ - p i , 2 / 0 - * / - 0 * , i ( 0 | - p 2 , 2t0-t'-t) 
J Q 

p2tQ—t 

' d 

JO 

dt?S-.t>(p1,P2)Oi2(pl,p2)Fl(to\p1t)Fl(tl>\ p 2 , / ) . (26) 

Equation (26), together with (25), is the anti-Fokker-Planck equation, i.e., the collision term is the negative of 
the Fokker-Planck collision term. If we call qi—q2= r we have 

dF1(to\pht)/dt=—j dp2dr\ 
•dcp(\t\) | _ ^ _ _ _ ^ _ 

. dr Idpi <9p2 

2to-t / 

dt'dJ 
i \ 

( P 1 - P 2 ) 

m 

Changing r—* — r 

dFi(/o|pi,0 1 f I 
= — / dp2dt\ 

dt vj L ar 

dr 

d d } 
\Fi(t0\ Pi,t)FiM P2,0 . 

dpi dp2) 

-d<p(\r\) [ d d 

dpi dp 2 JJ 
/ dt'dd r 1'\ j/dt 

}Fi(/o| Pi,0^i(fo| P2,0 , (27) 
dpi dp2) 

which is the anti-Fokker-Planck equation for / 0 ^ 
^2to—r. 

At time /=2/ 0 , from (24a) and (24b) we obtain 

*(1)('o|Pi,P2,2*o) = 0, (28a) 

2 ^ o | P i ^ o ) - F i ( 0 | - - P i , 0 ) . (28b) 

The equation describing the motion for t^2t0 is then, 
from (11) and (10) 

dFi(2*0 |pi,0 I / * 
— - = - / dx2d12g^(2k\ P l ,p2 ,0 , (29a) 

dt vj 

where 
^i>(2/0 |pi,P2,2/o) = 0 , 

iJ,i(2/o|pi,Olw«o = ^ i ( 0 | - P i , 0 ) , 
(29c) 

g(1)(2/o|pi,p2,0 

t~2t0 

J / / 5_^(pi ) p 2 )^ i 2 (p i ,p2) 

X/?i(2/o|pi,0^ ,i(2fe|p2,0, (29b) 

and, therefore, after ^ 2 / 0 + r the equation for Fi is 
again the Fokker-Planck equation and the system is 
again approaching equilibrium. 

V. SUMMARY 

From the BBKGY set of equations, we have derived 
an approximate set of equations for the weak force 
case, Eqs. (10) and (11); these have been shown to be 
reversible in Appendix A. In the special case that the 
initial g(3) = 0, the equation for Fx evolves into the 
"irreversible" Fokker-Planck equation after a time r 
(on the order of a time of a collision) and the system 
approaches equilibrium. 
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Suppose, on the other hand, the system is allowed to 
run for an arbitrary length of time to; then in order to 
describe the reverse motion, we consider a second sys­
tem identical to the first at time to, but with all mo­
menta reversed. The initial conditions on F± and g(1) 

for this second system are constructed from the Fi 
and g(1) of the first system at to. The second system 
during the time interval (to,2to) now performs exactly 
the reverse motion that the original system performed 
during the time (0,/o). The equation for Fi for the 
second system during the time interval (to, 2to— r) is the 
anti-Fokker-Planck equation and after the time 2 / 0 +r 
is the Fokker-Planck equation. 

For the second system the dependence of g(1) on its 
initial value causes the reverse motion to be accom­
plished: "built into" the initial value of g(1) at pairs 
of points outside the range of the force is the earlier 
behavior of F\ for the first system. The dependence of 
g(1) on its initial value would be missing if the mo­
mentum reversal were applied to the Fokker-Planck 
equation. 

The final question of what to use in describing a 
given system is answered in the spirit of statistical 
mechanics by the argument that if all that is known 
initially about a system is F\, then the most likely g(1) 

is zero and F\ will most likely evolve according to the 
Fokker-Planck equation.5 

APPENDIX A 

Equations (10) and (11), with /o=0, suppressing 
spatial coordinates in g(1) and S, are 

dF1(pht) 1 

dt 

« ( 1 )(Pl,P2,0 

1 f dcpn / d d \ 
= - dq2dp2 ( )g(1)(Pi,P2,*),-(Al) 

vj dqi \dpi dp 2 / 

= 5-«(pi,p2)g(1)(pi,P2,0) 

Cl d<pi2 / d d \ 
+ MS-vivi,**)—( 

Jo dqi \dpi dp 2 / dqi \dpi dp2 

X F 1 ( p i , * - / ' ) ^ i ( P 2 , ^ 0 . (A2) 

Consider $(pi,t) and Q(pi,p2,0 to be the solutions of 
(Al) and (A2) with initial conditions ^(pi,0) and 
g(pi,p2,0). In Eqs. (Al) and (A2) change p;—»—p» 
and t-±—t; then using the fact that S-t(pi,p2) 
— St(—Ph ~P2) we have 

d F i ( - p i , -t) if d<p12 
dq2dp2-

dt vj dq 

1 f d(fi2 / d d \ 
- / dq2dp2 ( — ) 
vj dqi \dpi dp 2 / 

? ( 1 ) ( - P i , ~ P 2 , - 0 

= ^,(p1 ,p8)gCi)(-Pl ,-p2 ,0) 

d<pu 1 2 / 3 d \ 

i Vapi ap2/ 
+ / dt?S-t'(phv2)-

Jo dqi 

X F i ( - p i , -t+f)F1(~p2y - / + * ' ) • (A4) 

Comparing Eqs. (A3) and (A4) with (Al) and (A2) we 
see that if we take as initial conditions in (A3) and (A4) 

^ i ( - P i , - 0 1 *-o= 3^1 ,0) , 

£ ( 1 ) ( -P i , -P2 ; -OI«-o=g(pi ,P2,0) , 

then the solutions of (A3) and (A4) are 

J M - P i , - 0 = *(Pi,0, 

g(1)(~Ph - P 2 , - 0 = S ( P l , P 2 , 0 » 
or 

Fi(pht) = $(-ph - 0 , 

g ( 1 ) (p i ,P2 ,0=8( -P i , - P 2 , - 0 -
(A5) 

Therefore, the approximation used to obtain Eqs. (Al) 
and (A2) have not destroyed the reversibility. 

APPENDIX B 

We show here that the long range of g(1) (see Sec. 
I l lb) does not cause the next approximation g(2) to 
become unbounded with increasing time. g(2) will con­
tain a term 

/ dt'S-.t>(xhx2) / dxzBnFi(vh t-t')g<M(x2, xh t-t') 
vJo 

•-X*f 
d<Piz &Fi(Pl,/-Y) 

dqsdp3 (| q/ - q31) — 
dqi dpi 

where 
X g ( 1 , W , * « , < - 0 , (Bl) 

Xi=S-t'(xhx2)xi; i=l,2. 

Figure 1 shows a configuration at time /' where the 
integrand in (Bl) is nonzero. 

FIG. 1. An inter­
acting configuration. 
(a) qi* = qi — pit/m; 
i==l, 2. (b) q3 is 
within range of force 
of q / and (c) p3 is 
such that at an 
earlier time (but be­
fore particle 2 is at 
q2*) particles 2 and 3 
interact since g(1)5^0 
at that time. 

X « » > ( - p i , - p » , - 0 , (A3) 
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In terms of the relative momentum P32; P32 must be 
within a solid angle irR2/ | r23 (?) |2 in the direction r23 (?), a / ^ 1 „ /VM 2 

which at large distances can be replaced by irR2/ 
I ru(?) 12, where r12(?) = ri2— VvJf/m and ri2-= q i - q 2 , 
Pl2=Pl—p2-

In (Bl) changing the momentum integration to P32 

we have 

TR2 

d? I dQpS2a, 

d<piz dFi 
d^dPZ2Pn

2 gV. 
dqi dpi 

(B2) 

To obtain the magnitude of (B2) we neglect the varia­
tion of a with time and treat it as constant with respect 
to the angles when it is nonzero. We then have 

|r1 2(OI 
awR2 

r12(Pi2/m)(l-cos26) 1/2 
tan~ 

' Put/mr 12—cosd' 

- tan -

( l - c o s ^ ) 1 ' 2 

- cos# ~i 1 

. ( l - c o s 2 ^ 2 . 
(B3) 

where 6 is the angle between r i2 and P i 2 . Equation (B3) 
approaches a limit as t—><x>y according to 

airR2 

r12(P12/m)(l-cos2ey^[2 
-tan 

— cos# 

.( l-cos2^)1 /2 . 

(l~cos26)^2) 

Put/mru J 
(B4) 
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Possibility of Synthesizing an Organic Superconductor* 

W. A. LITTLE 

Department of Physics, Stanford University, Stanford, California 
(Received 13 November 1963; revised manuscript received 27 January 1964) 

London's idea that superconductivity might occur in organic macromolecules is examined in the light 
of the BCS theory of superconductivity. It is shown that the criterion for the occurrance of such a state 
can be met in certain organic polymers. A particular example is considered in detail. From a realistic estima­
tion of the matrix elements and density of states in this polymer it is concluded that superconductivity should 
occur even at temperatures well above room temperature. The physical reason for this remarkable high 
transition temperature is discussed. I t is shown further that the superconducting state of these polymers 
should be distinguished by certain unique chemical properties which could have considerable biological 
significance. 

I. INTRODUCTION 

IN the forward to Vol. 1 of his monographs on 
superfluids, F. London1 questions whether a 

supernuid-like state might occur in certain macro-
molecules which play an important role in biochemical 
reactions. If this should be the case, an entirely new and 
important consideration would be added to the problem 
of understanding living systems. In view of the signifi­
cance of such an effect, it appears appropriate at this 
time, when a theory of superconductivity, the Bardeen-
Cooper-Schrieffer (BCS) theory2 has been so remark­
ably successful in explaining much of the behavior of 
superconductors, to examine in the light of this whether 
or not a superconducting state might occur in certain 
macromolecules. In view of the extreme complexity of 
biological systems, it would be folly for a physicist to 

* Supported in part by the National Science Foundation and 
the U. S. Navy Office of Naval Research. 

1 F. London, Superfluids (John Wiley & Sons, Inc., New York, 
1950), Vol. 1. 

2 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys, Rev. 108, 
3175(1957). 

attempt to experiment in such an environment. Instead 
of attempting this, we shall tackle the problem on our 
own grounds. The BCS theory, while by no means 
complete and exact, has succeeded in providing a model 
with most of the essential features of a superconductor. 
In particular, it prescribes certain criteria for a system 
which, if satisfied, should lead to the superconducting 
state. Our approach is to consider how these criteria 
might be applied to the design of a particular organic 
molecule which, if its synthesis is possible, should show 
some of the essential features of a superconductor and, 
as we shall show, some remarkable chemical properties 
as well. One of the interesting features about the 
particular class of molecules we investigate in detail is 
that the molecules should be superconducting at room 
temperature and, indeed, to temperatures well above 
room temperatures. We can show on simple physical 
grounds why this is so and perhaps, with hindsight, why 
this was to be expected. 

The idea of superconductivity in organic systems is 
not a new idea, however, there is a considerable amount 


